Functional Generalized Structured Component Analysis
نویسندگان
چکیده
منابع مشابه
Structured functional principal component analysis.
Motivated by modern observational studies, we introduce a class of functional models that expand nested and crossed designs. These models account for the natural inheritance of the correlation structures from sampling designs in studies where the fundamental unit is a function or image. Inference is based on functional quadratics and their relationship with the underlying covariance structure o...
متن کاملFuzzy Clusterwise Generalized Structured Component Analysis
the Natural Sciences and Engineering Research Council of Canada to the first and third authors, respectively. We wish to thank Terry Duncan for generously providing us with his alcohol use data. We also wish to thank the Editor, Associate Editor, and two anonymous reviewers for their constructive comments which helped improve the overall quality and readability of this manuscript. Requests for ...
متن کاملErratum to: Multilevel Dynamic Generalized Structured Component Analysis for Brain Connectivity Analysis in Functional Neuroimaging Data.
We extend dynamic generalized structured component analysis (GSCA) to enhance its data-analytic capability in structural equation modeling of multi-subject time series data. Time series data of multiple subjects are typically hierarchically structured, where time points are nested within subjects who are in turn nested within a group. The proposed approach, named multilevel dynamic GSCA, accomm...
متن کاملStructured Principal Component Analysis
Many tasks involving high-dimensional data, such as face recognition, suffer from the curse of dimensionality: the number of training samples required to accurately learn a classifier increases exponentially with the dimensionality of the data. Structured Principal Component Analysis (SPCA) reduces the dimensionality of the data by choosing a small number of features to represent larger sets of...
متن کاملDynamic Gsca (generalized Structured Component Analysis) with Applications to the Analysis of Effective Connectivity in Functional Neuroimaging Data
We propose a new method of structural equation modeling (SEM) for longitudinal and time series data, named Dynamic GSCA (Generalized Structured Component Analysis). The proposed method extends the original GSCA by incorporating a multivariate autoregressive model to account for the dynamic nature of data taken over time. Dynamic GSCA also incorporates direct and modulating effects of input vari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Psychometrika
سال: 2016
ISSN: 0033-3123,1860-0980
DOI: 10.1007/s11336-016-9521-1